Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos
نویسندگان
چکیده
Recently, the field of automatic recognition of users’ affective states has gained a great deal of attention. Automatic, implicit recognition of affective states has many applications, ranging from personalized content recommendation to automatic tutoring systems. In this work, we present some promising results of our research in classification of emotions induced by watching music videos. We show robust correlations between users’ self-assessments of arousal and valence and the frequency powers of their EEG activity. We present methods for single trial classification using both EEG and peripheral physiological signals. For EEG, an average (maximum) classification rate of 55.7% (67.0%) for arousal and 58.8% (76.0%) for valence was obtained. For peripheral physiological signals, the results were 58.9% (85.5%) for arousal and 54.2% (78.5%) for valence.
منابع مشابه
Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملتجزیه و تحلیل احساسات افراد از طریق سیگنال های مغزی با استفاده از تابع نگاشت پوانکاره
Introduction: Dynamic alterations of the brain are of high significance when it comes to analyze the human feelings. In this study, the hidden patterns corresponding for the emotional states have been investigated by adopting a certain Poincare’ map function inspired by the theory of chaos. The present study aimed to explore the significance relationship between the proposed methodology and the...
متن کاملطبقه بندی احساس افراد با استفاده از سیگنال های مغزی و محیطی
Abstract Emotions play a powerful and significant role in human beings everyday life. They motivate us, impact our beliefs and decision making and would affect some cognitive processes like creativity, attention, and memory. Nowadays the use of emotion in computers is an increasingly in vogue field. In many ways emotions are one of the last and least explored frontiers of intuitive human-comput...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کامل